
Problem Set 2

1. Create a min-heap by inserting the following elements in order:

11, 15, 3, 5, 8, 9, 10, 100, 20, 1, 1, 7, 13, 25, 31, 60, 2, 21

Draw the resulting heap as a tree and as an array. Then draw the
heap that you get after removing the minimum element.

2. (a) Given an array A of n integers, find the median of A in O(n log n)
time.1

(b) Give an O(n log n) algorithm that finds two distinct elements of A
which are as close as possible – that is with i ̸= j and |A[i]−A[j]|
as small as possible. You just need to give the elements, not their
indices.

(c) Given n points (x1, y1), . . . (xn, yn) in the plane, find the max-
imum slope of a line that passes through two of the points in
O(n log n) time. If there is a vertical line then ∞ should be your
output.

3. A sequence of n alien invaders is lined up along a hallway of the En-
terprise with each invader at an integer position between 0 and n− 1
inclusive. You have in your possession k explosive ordinances which
you’re allowed to place anywhere along the hallway and must detonate
simultaneously. Each invader has some resilience R[i], which means
the alien at position i is killed if it’s within the blast zone of at least
R[i] different explosives2.

Due to a recent initiative to make war more eco-friendly, you’ve re-
placed all your munitions with electric versions. Unfortunately your
k explosives still need to be charged. They’re currently all on the
charger, and will all have a blast zone of length t after t minutes of

1O(n) is possible but hard with a deterministic algorithm.
2The blast zone of each explosive is a closed interval.

1

charging. Give an algorithm to find the shortest time you can wait
before launching an attack which kills all the invaders. You’re guar-
anteed that R[i] ≤ k for all i (otherwise it’s not possible to kill all the
invaders). Your algorithm should run in O(n log n) time 3.

4. For this problem you’ll use a heap to implement a version of a priority
queue. Follow the instructions and answer the questions in the note-
book. You should only have to add a small amount of code. If you
find yourself adding a lot of code, you’re probably doing more work
than you need to.

1 Other problems that you don’t have to turn in.

• The goal of this problem is to show that any (deterministic) comparison-
based sorting algorithm requires at least Ω(n log n) comparisons in the
worst case. Suppose that we’re given an array A[0], . . . , A[n− 1] con-
taining the numbers 1, 2, . . . , N in some order. We’re not allowed to
see the entries of A directly. What we can do is pick two indices i ̸= j
and make a comparison query between A[i] and A[j] which will result
in a response of either ‘<’ if A[i] < A[j] or ‘>’ if A[i] > A[j]. Our goal
is to output a permutation i1, . . . , in of (0, 1, 2, . . . , n− 1) such that

A[i1] < A[i2] < · · · < A[in].

1. Suppose that we have an algorithm making T comparison queries
total4. How many possible sequences of responses are there?

2. Show that for any correct algorithm there must be at least n!
possible sequences of responses.

3. Conclude that T ≥ Ω(log(n!)).

4. Show that log(n!) is Ω(n log n), thereby showing that T is at least
Ω(n log n).

• Let F : Z → R be a real-valued, n-periodic function on the integers
meaning that F (x) = F (x+n) for all integers x (you can think of this
as a function defined on {0, . . . n− 1} but with wrap-around). We say
that x is a local maximum of F if F (x) ≥ F (x−1) and F (x) ≥ F (x+1).

3I’ll eventually post some hints on Campuswire, but try it on your own first.
4We’re free to assume exactly T comparison queries. Any algorithm which makes fewer

queries could perform additional “dummy” queries to get up to T.

2

https://colab.research.google.com/drive/1niERk7eBwzICrqKbunzk-lPBlNof5sr3?usp=sharing
https://colab.research.google.com/drive/1niERk7eBwzICrqKbunzk-lPBlNof5sr3?usp=sharing

Give an algorithm to find a local maximum of F using only O(log n)
function evaluations.

3

	Other problems that you don't have to turn in.

