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Abstract. We consider a d−dimensional lattice of points where, at each lattice point, a time series can be
measured. We are interested in reconstructing the time series at all points of the lattice, to a desired error
tolerance, by adaptively sampling only a subset of lattice points, each over a potentially short time interval. The
method we develop is tailored to atomic force microscopy (AFM) data where time series are well-represented by
constant functions at each lattice point. Through a convex weighting of a point’s relative isolation and relative
gradient size, we assign a sampling priority. Our method adaptively samples the time series and then reconstructs
the time series over the entire lattice. Our adaptive sampling scheme performs significantly better than sampling
points homogeneously. We find that for the data provided, we can capture piezoelectric relaxation dynamics and
achieve a relative `2 reconstruction error of less than 10% with a 47% reduction in measurements, and less than
5% with a 25% reduction in measurements.

1 Introduction and Background

Atomic force microscopy (AFM) is an imaging paradigm used to study materials at the nanoscale [9]. The method
is often costly in terms of the time it takes to measure each pixel, and thus efficient sampling and reconstruction
approaches are desired. The example we consider here arises in the study of ferroelectric materials and involves the
measurement of the piezoelectric response as a function of time, space and voltage. Piezoelectricity refers to an electric
charge that collects in solid materials, such as the ferroelectric film of the compound lead titanate (PbTiO3), which
motivates the challenge posed by the 2021 Smoky Mountains Computational Sciences and Engineering Conference
Data Challenge [12] that we address in this paper.

The challenge (problem 8) amounts to reconstructing the piezoelectric response of a ferroelectric film as a function
of time, measured at points (x, y) on its surface at various voltages V by taking as few measurements as possible.
Measurements are taken over some time duration (on the order of seconds) at a fixed (x, y, V ) to obtain the piezoelec-
tric response p(t;x, y, V ) representing the surface deformation [13] as a function of time. The method should quickly
determine the next set of (x, y, V )-values at which to measure p. These problem data are based on ferroelectric
polarization dynamics measured with dynamic piezoresponse force microscopy [7].

2 Proposed Solution

In solving this problem, we have developed Relative Isolation and Gradient Size Sampling (RIGS Sampling), a simple
active learning method that can “fill in” the piezoelectric response from incomplete data — specifically, we work with
a subset of points on the surface with corresponding voltages to reconstruct the piezoelectric response at unmeasured
position-voltage pairings. While active learning typically focuses upon an algorithm selecting unlabelled points from
which to learn in classification tasks [10][4], it can be used in contexts where measurements of complicated systems
can only be applied sparsely such as in air quality measurements [1]. Here, RIGS Sampling learns the piezoelectric
response by choosing positions and voltages at which to take measurements to improve its reconstruction accuracy.

At a high level, RIGS builds intermediate constructions, by using the simple and fast k-nearest neighbors regres-
sion [3]. It then uses these reconstructions to bias towards sampling points with large gradients. Importantly, we
demonstrate that adaptive sampling substantially outperforms non-adaptive sampling.

? Equal contributions



2 Lindstrom, Swartworth, Needell

We begin with some notation and assumptions. We assume the surface locations and voltages at which measure-
ments can be taken belong to a lattice with x−values 0 ≤ x0 < x1 < ... < xNx−1 ≤ Lx, y−values 0 ≤ y0 < y1 <
... < yNy−1 ≤ Ly, and V−values Vmin ≤ V0 < V1 < ... < VNV −1 ≤ Vmax for some positive integers Nx, Ny, and NV

with lengths Lx, Ly > 0 and voltages Vmin < Vmax. Furthermore, the piezoelectric responses can be measured at time
points 0 ≤ t0 < t1 < ... < tNt−1 ≤ Tmax with Nt > 0 an integer and 0 < Tmax. In the original dataset, x, y, V , t,
and the piezoelectric response p had physical units but they are not directly relevant for our study. Here, we work
with dimensionless x, y, and V : x0 = 0 and xNx−1 = Nx− 1 with regular spacings of 1 between x’s and similarly for
y. The voltages are made dimensionless by dividing physical voltages by 1 Volt. The times are measured in seconds
and the piezoelectric responses are measured in picometers.

We define a sample point as a point of the lattice (x, y, V ) ∈ [0, Lx]× [0, Ly]× [Vmin, Vmax] and assume that at each
sample point, measurements are taken at times t0, t1, ..., tnt−1 for some positive integer nt ≤ Nt. With a point (x, y, V )
of the lattice, we denote p(t;x, y, V ) to be the piezoelectric response as a function of time t and p̂(x, y, V ) to be a
constant approximation of the piezoelectric response. Now for i ∈ {0, ..., Nx−1}, j ∈ {0, ..., Ny−1}, k ∈ {0, ..., NV −1}
and m ∈ {0, ..., Nt}}, we let Eijkm = p(tm;xi, yj , Vk) be a tensor of the full experimental measurements at all lattice

points and all times and Êijkm reconstructions at all lattice points and times. Much of our notation is summarized
in Table 1.

Symbol Value Type Meaning

Nx/Ny 60 each given Number of x−values/y-values

NV 16 given Number of voltage values

Nt 128 given Number of time values that can be
measured

E full dataset given tensor of response over lattice points
and times

f varies hyperparameter Fraction of lattice points sampled
for reconstruction

nt varies hyperparameter Number of time values used in sam-
pling

w varies hyperparameter Weighting in [0, 1] to give to gradi-
ent vs isolation

nr 2000 fixed hyperparemeter Number of steps between full recon-
structions

nn 4 fixed hyperparameter Number of nearest neighbors for re-
constructions

k k(u, s) = exp(−|u− s|2) fixed hyperparameter Kernel for local density

p̂ not set computed from method time-constant approximation to re-
sponse

Ê not set computed from method tensor of response predictions over
lattice points and times

Table 1: Parameters used in this study.

With these notations set up, we formulate our objective as follows: given a tolerance 0 < τ , we seek to find
nt ≤ Nt to generate a collection of sample points S with |S| < NxNyNV with which we can accurately reconstruct
the piezoelectric responses over the entire lattice and over the full time window [0, Tmax] to within a relative `2-error
of τ . We define both the relative `2-error r by

r = ||Ê − E||F /||E||F (1)

where the F -subscript denotes the Frobenius norm, i.e., the square root of the sum of squared differences running
over all 4 dimensions.

In deriving our methodology, we first seek to understand the innate dimension of the data. We begin by considering
what the piezoelectric response looks like as a function of t. In sampling approximately 1% of (x, y, V )−values and
performing a Principal Component Analysis [6], we find that over 98% of the total variance of the response time series
p(t;x, y, V )’s can be expressed by the first principal component and that the first component is approximately constant
as depicted in Figure 1. This suggests the time series can be well described by constant functions p(t;x, y, V ) = const.
Based on other experiments of piezoelectric responses (see e.g. [8]) where the response had a correlation length on
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the order of ≈ 100 nm, we also expect that nearby points in space will have similar responses. This makes our later
choice to fill in missing data through nearest neighbor regression seem plausible.

Fig. 1: Left: percentage of variance explained given number of principal components used in standardized samples of
1% of lattice points. Right: plots of first 4 principal components as a function of time.

At a high level, until some fixed fraction of lattice points have been sampled, RIGS Sampling does the following: (1)
for each unsampled lattice point (xi, yj , Vk), compute a sampling priority based upon its distance to nearby sampled
points and estimated gradients (with respect to x, y, and V ) of the piezoelectric response at that point; (2) from the
priorities assigned, identify lattice points (x, y, V ) at which to to measure p(t;x, y, V ); then (3) take measurements up
to a time tnt

and approximate p(t;x, y, V ) by a constant p̂(x, y, V ). Periodically, for use in computing the gradients,

and at the end when all sampling has been done, a full reconstruction is done to generate Ê with a nearest-neighbor
regression either by (a) using the time-constant approximates p̂ (always done in intermediate steps and can be done
as the final step) or (b) using the full time series at all sampled lattice points and reconstructing each fixed time slice
separately (only as final step). We shall refer to (a) as a constant reconstruction and (b) as a full-time reconstruction.

3 Approach

Python code implementing our sampling scheme is available at this Github repository [11]. Algorithm 1 provides
the full details of RIGS Sampling and makes use of the helper routines specified by Algorithms 2 and 3. In Algorithm
2, we wish to score how isolated a point is from other points that have been sampled. To do so, we ascribe a proxy for
local density at each point by summing radially symmetric, decaying kernel functions centered at each sampled point
and its reflections (to be explained later in this paragraph). Then unsampled points with the largest inverse density
are deemed more isolated and should be sampled with higher priority. We find that with using the sampled points
alone, points on the boundary will be scored as being more isolated even when they are not since they have fewer
neighbors. To address this, we add reflection points in computing the density, i.e., to compute the density proxy, we
use not only the sampled points but also their reflections R across each face of the cube. When gradient weight is
not considered, this tends to give reasonably uniform samplings of points as can be seen in Figure 2. For simplicity,
our kernel function is k(u, s) = e−|u−s|

2

but in the future we could consider choosing kernels based on Kernel Density
Estimation [5]. In Algorithm 3, we score points based on how large |∇p̂| (computed in (x, y, V )-space) is relative to
other points.

We note here that more sophisticated methods, such as those often used in image processing, could be used
in place of a simple weighted average of nearest neighbors. However, we found such methods, like the Biharmonic
Inpainting [2] approach, to be much slower while yielding comparable results. As another comment, it seems quite
natural that instead of using constant approximations, we could instead compute the principal component represen-
tation of p(t;x, y, V ) at a sample of (x, y, V )-points and then use the first few principal components to reconstruct
the piezoelectric response (with suitable adaptations such as using only nt values to estimate the projections onto the
components). This is especially appealing given that higher principal components have a nontrivial time-dependence;
however, with regards to reconstruction errors, we did not find better performance in doing so and thus opt for the
more simple approach. As a result, our method uses constant approximations, which is more or less equivalent to
using only the first principal component.

https://github.com/wswartworth/active_imaging/blob/main/active_sampler.py
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Algorithm 1 Relative Isolation and Localized Gradient (RIGS)

1: |Input| the averaging window width nt; an initially empty list of position-voltage points that have been sampled; a list
of unsampled position-voltage points U , initially including all lattice points; a gradient weight 0 ≤ w ≤ 1; a sampling
fraction threshold 0 < f ≤ 1; a reconstruction frequency nr; a number of nearest neighbors for image reconstruction nn;
and whether or not to do a full time reconstruction, full.

2: step = 0
3: m = (xround((Nx−1)/2), yround((Ny−1)/2), (Vround((NV −1)/2)), S = {m}, U ← U \ {m}
4: Measure p(t0;m), p(t1;m), ..., p(tnt−1;m) and set p̂(m) = 1

nt

∑nt−1
j=0 p(tj ;u)

5: while |S|/(|S|+ |U|) < f . do
6: if step is a multiple of nr then
7: Compute a reconstruction Ê over the entire lattice using the nn nearest neighbors applied to the points in S with

their constants {p̂(s)|s ∈ S} using Python’s KNeighborsRegressor from the sklearn module.
8: Compute the gradient score at each point according to Algorithm 3.
9: end if

10: Make a list of sampling priorities P corresponding to each unsampled point with scores given by wg + (1− w)i where
g ∈ G is the corresponding gradient score of the unsampled point and i ∈ I is the corresponding isolation score of the
unsampled point — see Algorithms 2 and 3.

11: At the u ∈ U with highest priority, measure p(t0;u), p(t1;u), ..., p(tnt−1;u) and approximate the piezoelectric response
at u by p̂(u) = 1

nt

∑nt−1
j=0 p(tj ;u).

12: U ← U \ {m}, S ← S ∪ {m}.
13: Run Algorithm 2.
14: step← step + 1.
15: end while
16: if full == true and nt == Nt then
17: Compute the full-time reconstruction Ê over the entire lattice using the nearest neighbor algorithm as before in each

time slice separately.
18: else
19: Compute the constant reconstruction Ê over the entire lattice using the nearest neighbor algorithm as before using a

constant-in-time approximation.
20: end if
21: |Output| Ê

Algorithm 2 Density Algorithm: each unsampled point is ascribed an isolation score on [0, 1]. The set of reflecting
functions R reflect sampled points across all 6-boundaries of the lattice.

1: |Input| a list of sampled lattice points S, a list of unsampled lattice points U with corresponding isolation scores I all
initially 0, a symmetric k(u, s) = K(|u− s|) a decreasing function, and reflecting functions R.

2: for all u = (x, y, V ) in U do
3: density = 0
4: for all s = (x′, y′, V ′) in S do
5: density ← density + K(u, s) +

∑
r∈RK(u, r(s)).

6: end for
7: Set isolation score in I corresponding to u to 1/density.
8: end for
9: TotalIsolationSqd = 0

10: for all i in I do
11: TotalIsolationSqd← TotalIsolationSqd + i2

12: end for
13: for all i in I do
14: i← i/

√
TotalIsolationSqd

15: end for
16: |Output| I
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Algorithm 3 Gradient Algorithm: each point is ascribed a gradient score on [0, 1].

1: |Input| a list L of all lattice points with corresponding gradient scores G all initially set to 0.
2: for all ` in L do
3: Assign the corresponding gradient score of G to be the magnitude of the gradient at ` using Python’s gradient from

the numpy module.
4: end for
5: TotalGradSqd = 0
6: for all g in G do
7: TotalGradSqd← TotalGradSqd + g2

8: end for
9: for all g in G do

10: g ← g/
√
TotalGradSqd

11: end for
12: |Output| G

4 Results

Here we focus on investigating how the method performs at reconstructing the complete dataset E by sampling only
a subset of lattice points or time series over a shorter duration. In sequence: we begin by observing how the gradient
weight affects the lattice points being sampled; then, we study how the constant reconstructions fare under the choice
of various hyperparameters; finally, we repeat the previous line of investigation for the full-time reconstruction.

We first see that as the relative weight ascribed to the gradient increases, the set of sampled points chosen changes
from almost uniform to highly focused on areas with rapid changes in the piezoelectric response (see Figure 2). We
speculate some of the circular sampling patterns with w = 1 stem from the gradients only being estimated every
nr iterations. Qualitatively, we also note that for a fixed time slice, a constant reconstruction accurately captures
key features of the piezoelectric response. In Figure 3, we see that with only nt = 30 time points used and by only
sampling a fraction f = 0.4 of all lattice points, the constant approximation we obtain accurately depicts the response
at time slice 64, which is beyond the range of times used in sampling. In particular we note that the reconstruction
captures sharp edges from the original image quite well.

Among the hyperparameters we deem most important, we wish to study how the overall reconstruction error
(Eq. 1) varies as we change the gradient weight w, number of time samples used nt, and fraction of lattice points
sampled f . We wish to identify which combinations of hyperparamameters reduce the reconstruction error to within
various tolerances. In the case of using constant reconstructions, Figure 4 shows these results. With w = 0.8, nt = 50
time points, and f = 0.6 lattice points sampled, the relative error is less than 15%, corresponding to measuring only
23% of all NxNyNVNt possible lattice-time points. However, this fails to capture time-dynamics as the responses are
constant in time for each fixed (x, y, V ).

In Figure 5 and Figure 6 we consider the full-time reconstruction, which yields our highest quality results. Figure 5
shows the relative `2-loss for various fractions of points sampled and gradient weights. Unsurprisingly, the quality
of the reconstruction strictly improves with the fraction of sampled points. More interestingly, we often observe
improvement as the gradient weight w increases. This implies that our algorithm benefits from adaptivity. When
w = 0 our algorithm samples non-adaptively, while adaptivity plays a progressively greater role as w increases.
When only a small fraction of points are sampled, setting w to be too large damages the reconstruction accuracy.
We suspect this is due to our algorithm leaving large low-gradient patches almost completely unsampled. For large
fractions of sampled points f this effect is less significant as it is difficult to avoid sampling large patches. Notably
we achieve less than 10 percent error by sampling only 53 percent of points, and achieve less than 5 percent error
by sampling 75 percent of points. In addition Figure 6 shows that reconstructing time slices individually allows our
reconstruction to capture the piezoelectric response as a function of time.

As a final remark, a Python implementation of RIGS Sampling for this dataset takes on average 2.7 ms per
iteration with nr = 2000 and nn = 4, making it a viable choice in computing the optimal subsequent lattice sampling
points.

5 Contributions

Our method is capable of reducing the number of experimental measurements necessary to describe the piezoelectric
response measured at various positions and voltages. Notably, we have shown that in the example data, we can
reconstruct the full dataset to within a relative `2-error of 10% with 47% fewer measurements than done to obtain the
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Fig. 2: The set of set of sampled points (shown in white) generated by sampling the first time series component
(nt = 1) from 50 percent of grid points, using gradient weights 0 (top row), 0.5 (middle row), 1.0 (bottom row). The
dataset included 16 different voltages but for compactness only 4 are shown.

Fig. 3: Top row: The reconstructed piezoelectric response at time slice 64 using the first 30 time series points, sampling
from 40 percent of the lattice, and with a gradient weight of 0.81. Bottom row: The true piezoelectric response at
time slice 64.
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Fig. 4: Relative `2-error of the constant reconstructions as a function of the gradient weight w, the fraction of sampled
points f (y-axes), and the number of time components nt used (x-axes).

Fig. 5: Relative `2-error of full-time reconstructions as gradient weight w and sampling fraction f vary (left) along
with the optimal reconstruction error attainable for a given sampling fraction f (right).
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Fig. 6: Plots of the experimental and reconstructed piezoelectric responses vs time at 50 percent sampling, averaged
over all (x, y)-lattice values at various voltages.

data. Additionally, we demonstrate that adaptive measurements can significantly reduce the measurement capacity
required for piezoelectric microscopy, as compared to non-adaptive measurements.

Our work demonstrates that active learning based on gradient information is beneficial and that time series may
have a low dimensional representation (constant in this case), which could be useful for other large multidimensional
datasets.
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